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Modelling of through-hole electrodeposition
Part 1I: Effect of electrical migration
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Abstract

A quantitative investigation was conducted on the effect of electrical migration on the current distribution in
through-hole electrodeposition. Polarization, surface concentration and current distribution were computed as
functions of the geometry of the through-hole, electrolyte flow rate, applied current density and concentration of the
supporting electrolyte. Results were compared with those from a simplified model in which the electric field was
neglected within the diffusion layer.

List of symbols I N, Ji T integrated total flux over the control
volume right face, left face, top face
A, through-hole aspect ratio, L,/(2Ry) and bottom face (dimensionless)
c concentration of cupric ion (mol cm™3) n number of electrons transferred
c2, o+ concentration of hydronium ion Pe Peclet number (2(v,}Ro/D1)
(mol cm ™) P., P local Peclet number on the control
€3, Cg0r- concentration of sulfate ion (mol cm™3) volume right face and left face
C4, CHSO; concentration  of  bisulfate ion R, universal gas constant (8.314 ]
(mol cm™?) mol~! K1)
Cino bulk concentration of species i Ry radius of the through-hole (cm)
(mol cm™3) r ratio of the normality of the added ion
CH,SO, concentration  of  sulfuric  acid to that of the counterion
(mol cm™3) T temperature (K)
CCuso, concentration of copper sulfate Vi, applied potential (V)
(mol cm™?) () average axial velocity (cm s~!)
Dy, Dy, D3, D4 diffusion coefficient of cupric ion, hy- vy axial velocity (cm s~ 1)
dronium ion, sulfate ion and bisulfate v, dimensionless axial velocity
ion (cm? s7!), respectively y radial direction (cm)
Dy, Dy, D, Dy local diffusive flux through the control z; charge of metal ion
volume top face, bottom face, right face =z charge of hydronium ion
and left face (dimensionless) z3 charge of sulfate ion
E; equilibrium potential of electrode z4 charge of bisulfate ion
reaction (V)
F faradaic constant (96 487 C equiv.™!)
F., K local convective flux through the con- Greek letters
trol volume right face and left face oy, o anodic and cathodic transfer coeffi-
(dimensionless) cients
i local current density (A cm™2) y order of the reaction
fave average current density (A cm™?) { dimensionless axial distance, x/L
io exchange current density (A cm™2) 4 dimensionless axial distance, L; /L,
i dimensionless local current density, {, dimensionless axial distance,
iROF /Ry Tkoo xD1/(2(v)R3)

i/iave normalized local current density Ne concentration overpotential (V)



N surface overpotential (V)
0; dimensionless concentration of species i
0° guess value for the dimensionless con-

centration of species i

A0, difference between the actual value and

the guess value for the concentration
Koo conductivity of the solution (Q ' ecm™")
14 dimensionless radial distance, y/R,

1. Introduction

Copper electrodeposition is one of the most important
steps in the production of the multilayer printed wiring
boards (MLB). Through-hole electrodeposition in MLB
has been studied by many researchers over recent
decades. As the technology of MLB advances, there is
a continual increase of circuit densities on the boards.
Also, the aspect ratio (length to diameter) of these
through-holes has become higher and is expected to
reach 20 during the next decade [1]. In practical
applications, the uniformity of the copper distribution
within a through-hole is a most important issue.

Most through-hole electrodeposition models have
been based on a bulk-diffusion approach which sepa-
rates the electrolyte into a thin diffusion layer region and
a bulk region [1-5]. The variation of the depositing ion
concentration is confined in a region close to the
electrode surface. A uniform, bulk concentration is
assumed at a finite distance away from the cathode. This
result, known as the bulk-diffusion model, is good for
electrolyte flow at a high velocity and for the concen-
tration of the depositing ion to be low as compared to
that of a supporting electrolyte. Because of the nonlin-
ear nature of the Hagen—Poiseuille flow, the velocity
profile is also linearized around the electrode surface by
considering only the linear terms and neglecting all
higher order terms. This model is widely used in the
electrochemical literature because of its simplicity and
its relatively short computational time.

Hazelbeck and Talbot [6] have included the effect of
ionic migration in their analysis without separating the
electrolyte into two regions. The Tafel equation was
used to describe the kinetics of metal deposition. The
solution was obtained by using the technique of orthog-
onal collocation with the dependent variables approx-
imated by Legenedre polynomials. In their model, the
metal ion concentration at the entrance region of the
electrode was set to the bulk value, which is a generally a
good assumption at high Peclet numbers.

More recently, Dudek and Fedkiw [7] and Goldbach
et al. [8] modelled the electrodeposition of copper on a
rotating disc electrode and a parallel plate reactor,
respectively. Both included the effects of diffusion, mi-
gration and convection in their model. It was assumed
that the metal deposition process occurs at steady state
and is governed by the complete Butler—Volmer equation.
In the former, the system of nonlinear equation was
solved numerically using the finite element code while, in
the later, it was solved using the control volume approach.

solution potential (V)
dimensionless solution potential
ohmic loss in the electrolyte (V)
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In the present investigation, a more rigorous model is
developed for through-hole electrodeposition that con-
siders the effect of ionic migration, the exact Hagen—
Poiscuille profile, and the complete Butler—Volmer
kinetic equation. We term this the ‘field model’. The
set of highly nonlinear partial differential equations is
discretized using the control volume approach and
solved numerically using an algebraic solver.

Results from both models are presented to demon-
strate the importance of the effect of ionic migration on
the current distribution and surface concentration. The
importance of the field model was shown by using a
system with low copper concentration (0.3 M CuSOg4
and 2.0 M H,SO4) as the base case for comparison.
Results show that in cases where the amount of a
supporting electrolyte is not in excess, the more rigorous
field model should be used to predict the current profile.

2. Theoretical
2.1. Bulk-diffusion model

A through-hole model is shown schematically in
Figure 1. Two counter electrodes are placed at a
distance Ry from the two ends of a working electrode.
A steady-state, fully developed, laminar flow is assumed
to occur as the electrolyte traverses from the left to the
right. The velocity distribution is, therefore,

by = inas [1 - (,{0)] (1)

where v, is the axial velocity, vpmax 1S the maximum axial
velocity, y is the radial coordinate from the centre of the
through-hole, and Ry is the radius of the through-hole.
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Fig. 1. Schematic diagram of the through-hole model.



Between the working and the counter electrode, an
applied potential, V,pp, is consumed by the ohmic loss in
the electrolyte, ¢,, the concentration overpotential
near the working electrode, 7., the surface overpotential
at the working electrode, 7, and the equilibrium cell
potential of the electrode reaction, E;:

Vapp = ¢o +11c + 115 + E; (2)

The concentration overpotential is dependent on the
surface concentration of the reacting species at the
working electrode:

RgT Cls
=—1 3
e =- 7 n(cm) (3)

where R, is the universal gas constant, T the tempera-
ture, n the number of electrons transferred in the
electrochemical reaction, F is the faradaic constant, ¢
and ¢y, are the surface and bulk concentrations of the
depositing ion, respectively.

At the surface of the electrode, the local reaction rate
is given by the Butler—Volmer equation. That is,

) ol
_exp [;{T};F ns(x)]) (4)

where iy is the exchange current density at the reactant
bulk concentration, o, and o, are the anodic and
cathodic transfer coefficients, and x is the axial coordi-
nate. The order of the reaction, y [9], is given by
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In the thin diffusion layer, the reactant concentration
is governed by the convective diffusion equation. That is,

86’1 o 1 8 801 3 8c1
Ve =D (;@ [ya—y} T ox [ED ©)

subject to the following boundary conditions:
At y =0, for all x,

861 -
F 0 (7)

Aty:R(), for -1 <x<0and L, <x<L;+ Ly,

acl o
B 0 (8)

Aty =Ry, for 0 <x < L,

dcyi(x)
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At x < =L, for all y,

(10)

Cl = Clxo
Atx > 2Ly + L,, for all y,

acl
i 0 (11)
Previous authors [1-5] used a different form of bound-
ary condition (10) by assuming that the concentration at
the inlet of the working electrode (x < 0) is equal to the
bulk value. Generally, this assumption is good for very
large Peclet numbers where the axial convective trans-
port to the electrode surface is much greater than the
axial diffusion term. The present boundary condition
takes in account any back diffusion even in situations
where the Peclet number is low.

In the bulk region where no concentration gradient is
assumed to exist, the potential variation is governed by
the Laplace equation. Thus,

10 ( 08\ 9 (98) _,
y oy u dy ox\ox)
subject to the following boundary conditions:

At y =0, for all x,

99 _
dy

(12)

0 (13)

Aty =Ry, for —L; <x<O0and L, <x <L+ Ly,

0 _

5 =" (14)

Aty =Ry, for 0 <x < Ly,

% _; (15)

Koo — = I

dy
At x =0 and x = L,, for all y,
¢=0 (16)

where K., is the conductivity of the bulk solution.
In terms of the following dimensionless variables,

DmaxRo L 1

pe=tmafo L g Cl 17
€ D, r 2R07 1 Clo ( )

Ly - iRy F y
=— = == 18
Cl L27 %) RgTKQo’ é RO ( )

x Uy - iRy
(=—, bh=—, hh=—fF7r — 19
L, Umax : nFD1C1oo ( )

the convective diffusion equation and boundary condi-
tions are as follows:
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At { < =, for all ¢,

0, =1 (24)
At { > 1+, forall &,
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Two important dimensionless variables are the

Peclet number, Pe, and the aspect ratio, 4,. The Peclet
number is a measure of the relative importance of the
convective flux to the diffusive flux while the aspect ratio
is defined as ratio of the length to the diameter of the
through-hole.

Similarly, the dimensionless Laplace equation and
boundary conditions are,

10 [, 04 1 0 [0¢ B

7 98] * ekt [or) = 26)
At £ =0, for all ¢,
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56 =0 (27)
Até=1for - <{<0and 1 <{<{ +1,

op

5e="0 (28)
Até=1,for0< (<1,

n=St (29)

At{=0and {={; + 1, forall &,

<
I
o

(30)

The numerical discretization and the solution procedure
of the bulk-diffusion model are given in Appendices A
and C, respectively.

2.2. Field model

In this more rigorous approach, the electrolyte is not
separated into two regions. The potential is coupled
with the mass-transfer calculations. In addition to the
depositing ion, the hydronium ion and the anion
concentrations need to be included in the model. In
all, five equations need to be solved simultaneously.
These are the convective diffusion equations coupled
with field effects for each species,

P (10 ] 0], 0 [0
Tox  T'\yoy yay Ox | Ox

10 w}
+z; iF Ci—— -
M<y®P®
0 [0¢] 0Oc;d¢p  O¢ Oc;
o [ax} + dy dy  Ox 8x> (31)

with i = 1 for the depositing ion, i = 2 for the hydro-
nium ion, i = 3 for the sulfate ion and i =4 for the
bisulfate ion and the electroneutrality equation,

4

ZZ,'C,‘ =0

i=1

(32)

In a recent copper deposition model by Goldbach et
al. [8], they considered the acid copper sulfate solution
to consist of three ions: Cu*", H* and HSO; due to the
high acid concentrations. Bortels et al. [10] have also
considered the acid copper sulfate solution to consist of
only three ions: Cu2+, H™, and SO;~ for a solution with
a copper sulfate concentration of 0.01 M and a sulfuric
acid concentration of 1.0 M. In general, the value of the
ionization constant for the sulfuric acid is very large.
Therefore, the sulfuric acid can be assumed to dissociate
completely into the hydronium and bisulfate ions.
However, the ionization constant, K., for the dissocia-
tion of the bisulfate ion into the hydronium and sulfate
ions is related by the following equation:

CHSO,

K. = (33)

Cy+ CSO%’

and is generally dependent on the sulfuric acid concen-
tration. Different sulfuric acid concentrations in the
copper plating solution are considered. Therefore, it is
important to consider the copper plating solution to
consist of four species: Cu?", H*, SO~, and HSO] in
conjunction with the dissociation constant of the bisul-
fate ion.

The model assumes that the only heterogeneous
reaction proceeding at the electrode is the metal depo-
sition occurring at 100% current efficiency and neglects
hydrolysis reactions occurring at the electrode during



metal ion depletion. This model does not consider
secondary reactions, such as the hydrolysis of water and
the evolution of hydrogen at more cathodic potentials.
For the specific concentrations used, a discussion
follows for those results when the model is no longer
valid due to the occurrence of a secondary reaction.
The ionic mobility, y;, and the diffusion coefficient, D;,
for species i are related by the Nernst—FEinstein relation:

D;
;= 34
= BT (34)
The boundary conditions are as follows:
At x = —L,, for all y, ¢; = Cioo,
with i =1, 2, 3 and 4,
3
=) 1 ZiCjo
C4:M and ¢ =0 (35)
z4

Atx—LlJrLz,forally,g =0,withi = 1,2, 3 and 4,
¢=0

Aty =Ry, for —L; <x <0,

(36)
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withi = 1, 2, 3 and 4.
Aty:(), for —L; <x < L{+ L,

8ci
=0
dy

with y = 0, and

op
9y =" (39)

Aty:Ro, for 0 <x < L,,

0 dc i
z1 i Fey a¢+D1 8)}1 F

with i = 2, 3 and 4, and

99 p, % g

5 g (40)

Zi.quCz

In terms of the dimensionless variables, defined in
Equations 16-18, and a dimensionless potential, ¢,

oF

b= o7 (41)

the governing equations are,
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4
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The boundary conditions are as follows:
At { = —{(4, for all ¢,
0 =—
Clo
withi = 1, 2 and 3, and
3
—33 0. ~
o= 2= 9% a g—0 (44)
z4
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=0 48
5 (49)

Até=1for0< (<1,



610

and
oo 00;
i 4
z;0; 8é+ RE 0 (49)
with i = 2, 3 and 4.

The numerical discretization and the solution proce-
dure for the field model are given in Appendices B and
C, respectively.

3. Results and discussion
3.1. System with excess supporting electrolyte

Table 1 shows a summary of the physical and kinetic
parameters used in the simulation. a,, o, iy, 7, and K.
are typical parameters used by Pesco [5] in his through-
hole model. Dy,D,,D; and D4 are the diffusion coeffi-
cients of the individual ions at infinite dilution [9]. The
order of the reaction, y, was calculated from Equation 5
by using parameters obtained from Pesco’s paper [5].
The kinematic Viscosity was assumed to have a value of
1.00 x 1072cm?s~!'. Compared to the kinetic parame-
ters used by Cabdn and Chapman [11], the statistical
analysis of their experimental values for o,, o, and i
yield slightly lower values.

The cathodic potentials and currents are taken to be
positive values. A comparison between the bulk diffu-
sion model and the field model is shown for a plating
solution consisting of 0.01 M CuSO4 and 2.0 M H,SOy.
Following the work of Kessler and Alkire [12], a
through-hole having an aspect ratio of 3.51 was chosen
for this study, with a through-hole radius of 0.039 cm
and a board thickness of 0.274 cm.

Using the geometric dimensions and chemical com-
positions as discussed above, polarization curves for
both models at Peclet numbers of 100 and 100 000 are
constructed in Figure 2. With an excess supporting
electrolyte, good agreement is found between the two
models. The surface concentration and the current
distribution at different fractions of the limiting current
are shown in Figure 3. The current density is highest at
the entrance region of the through-hole and decreases in
the direction of the flow. If these profiles were normal-
ized with respect to the average current densities, less

Table 1. Physical and kinetic parameters

da:0.75

ac = 0.25

y=0.75

n=2

i():0.0()l A cm™?
=055 (Qcm)”!

D1 =0.55x 107 cm

D> =9312x10¢

D3 =1.065 x 10~ 50mzs’l

Dy =133 x 10 50m2s’1

v=1.00x 102 cm?s™!
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Fig. 2. Polarization curves. Key: (O) bulk diffusion model and (—)
field model.

uniform profiles are observed at higher fractions of the
limiting current. Similarly, the cupric ion concentration
is higher at the entrance and decreases downstream. At
the higher fractions of the limiting current, the cupric
ion concentration is consumed faster and the entire
profile is shifted downward. Again, the agreement
between the two models is good.

3.2. System with low copper concentration

The r value, proposed by Newman [9] , is an important
parameter used to characterize the relative concentra-
tion of the reactant in comparison to the concentration
of the supporting electrolyte.

CH+
2 CSO;[

r= (50)

In a solution with an excess amount of a supporting
electrolyte, the value of » approaches one. On the other
extreme, » = 0 implies that the solution contains only a
single salt. A solution consisting of 0.3 M CuSO,4 and
2.0 M H,SOy4 is generally considered a lower copper
plating bath with a » value of 0.87. With these plating
conditions, numerical simulations are performed for
both models and results are presented in Figures 4 and 5.

Figure 4 shows polarization curves for both models at
a Peclet number of 100 000. Results show that a higher
limiting current density is presented by the field model as
compared to the bulk-diffusion model due to the
enhancement of the flux by the effects of ionic migration.
However, the magnitude of the average current density
at a given applied potential for the field model is always
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Fig. 3. Surface concentration profiles and current distributions at
Pe =1 x 10°. Key: (O) bulk diffusion model and (—) field model.

higher than the bulk-diffusion. The general shape of the
polarization curve also shows that a greater overpoten-
tial is required by the bulk-diffusion model to obtain
99% of its limiting current value. Based on the Nernst
equation, it was estimated that hydrogen evolution starts
to occur when the value of V,,,F'/(R,T) is approximately
14.6. Beyond this potential, both the deposition of metal
and the evolution of hydrogen occur simultaneously on
the electrode surface. For a solution with these concen-
trations, the model breaks down when the current
exceeds approximately 50% of its limiting value.

Figure 5 shows a comparison of the normalized
current distribution between the two models at the same
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Fig. 4. Polarization curves at Pe = 1 x 10°. Key: (—) field model and
(- - - -) bulk diffusion model.

611

i/,

z/zm,g

0.6 0.8 1.0

0.0 0.2 0.4

Fig. 5. Current distributions at Pe = 1 x 10°. Key: (O) bulk diffusion
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fraction of the limiting current. At low fractions
(fave/iim = 0.3) of the limiting current, the bulk diffusion
models shows a slightly less uniform current distribution
as compared to the field model due to a higher
overpotential. The differences in the current distribution
are most apparent at the leading and trailing edges of
the working electrode. Based on the previous discussion,
hydrogen starts to evolve when iyyg/ilim = 0.8. The
current distribution only considers the metal ion depo-
sition and does account for any generation of hydrogen.
In Figure 5 better agreement is found between the two
models at higher fractions (iavg/iim = 0.8) of the limiting
current. Even for a copper plating solution with an r
value as high as 0.87, this example shows differences in
the current distribution between the two models. In both
cases, secondary-like current distributions are shown at
favg/tim = 0.3 where the mass transfer resistance is
small. The current distribution is higher near both
ends of the through-hole because of their proximity to
the counter electrodes. At higher iyve/ilim values, the
current distribution becomes less uniform. The current
density becomes higher in the upstream region and
lower in the downstream region, due to the effects of
mass transfer.

3.3. Solutions with different amounts of a supporting
electrolyte

Polarization curves for solutions containing the same
copper sulfate concentration (Ccuso, = 0.3 M) but
two different supporting electrolyte concentrations



612

1200

1000 | y

800 . _

600 |-

ingR,/@FD,C,,)

400 [ . ]

200

T T T T T T
~

0 PR NI RS RS R
40 60 80 100

o
N
o

Vo F/(R,T)

app

Fig. 6. Polarization curves at Pe =1 x 10°. Key: (—) r = 0.87 and
(----)r=20.310.

(C'HZSO4 =2.0M, »r=0.87 and CH,S0, = 0.135M, r=
0.310) are shown in Figure 6 for a Peclet number of
100 000. Polarization curves show that a higher applied
potential is required to reach the limiting current for
the solution containing less supporting electrolyte due
to a lower electrolyte conductivity. On the other hand,
the magnitude of the limiting current density is higher
in the solution containing less supporting electrolyte
because of the enhancement of ionic flux in a stronger
electric field. The case for the concentration of a
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Fig. 7. Current distributions below the limiting current. Key: (—)
r = 0.874 and (O) r = 0.310.

supporting electrolyte with a r value of 0.87 was
already discussed in the previous Section. For the
solution with a low concentration of a supporting
electrolyte, it was estimated that hydrogen evolution
starts to occur when the value of Vyp,F'/(R,T) exceeds
15. These numerical values imply that the model begins
to break down when the current exceeds approximately
40% of its limiting value.

Figure 7 shows a comparison of the current distribu-
tions at three different fractions of the limiting current
for two concentrations of the supporting electrolyte.
Similar to previous discussions, the current distribution
results for i,ye/iim = 0.3 and 0.8 are unrealistic due to
the onset of a secondary reaction. They are shown only
to demonstrate the importance of the effect of ionic
migration on the current distribution. A less uniform
current distribution is observed in the solution contain-
ing less supporting electrolyte. Also, the appearance of a
local maximum at x/L = 0.95 is shown in the solution
containing less supporting electrolyte. This is due to a
tradeoff between the decreasing ion concentration and
the increasing field strength as the right of the hole is
approached. At higher i,y /ilim values, the local maxi-
mum is displaced further upstream. The local maximum
should disappear at iaye/itim = 1.0 since the deposition is
controlled solely by mass transfer.

Figure 8 shows the surface concentration profiles at
various fractions of the limiting current for the two
supporting electrolyte concentrations. Similar surface
concentration profiles were shown by Hazelbeck and
Talbot [6] for a r value of 0.87. Because of the
assumption of a uniform bulk concentration by Hazel-
beck and Talbot [6] at the leading edge of the electrode,
all of their surface concentration values starts at the
bulk value and decreases as it progresses along the
positive axial direction. With our boundary conditions,
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Fig. 8. Surface concentration profiles at Pe = 1 x 10°.



results show that the value of the dimensionless surface
concentration is highest in the upstream region but not
equal to one at x/L,= 0 for a » value of 0.87. At low
fractions (fave/itim =0.3 and 0.5) of the limiting current,
the trend is that the surface concentration profile
decreases in the downstream region due to the depletion
of cupric ions at the electrode surface as the electrolyte
travels from the left to the right. However, at high
fractions (iavg/ilim = 0.8) of the limiting current, the
surface concentration profile decreases initially, forms a
local maximum at x/L, =0.5, and then decreases down-
stream. At a sulfuric acid concentration of 0.135 M, field
effects become important. The more reactive portions of
the through-hole are regions more accessible to the
counter electrodes. At higher iag/iim values, the
appearance of a global maximum in the surface con-
centration within the through-hole is observed.

4. Conclusions

Results are shown for a through-hole geometry with an
aspect ratio of 3.51 and a radius of 0.039 cm. For
copper plating solutions with an » value of 0.87
(ccuso, = 0.3 M), numerical simulation shows that a
larger overpotential is required by the bulk-diffusion
model to obtain the same average current density as
compared to the field model. For the same 7ay, /i1im value
for both models, a more uniform current distribution is
predicted by the field model. The results show that the
field model should be used to estimate the current
distribution in through-hole electrodeposition even for
supporting electrolyte concentrations with » values as
high as 0.87. Generally, secondary-like current distribu-
tions are obtained for i,ye/iim < 0.3 while mass-transfer
effects dominate at i,yg/iim > 0.8. Both kinetic and mass
transfer effects are important at intermediate current
levels. Results show the current profiles from the bulk-
diffusion model converge to the results from the field
model in the presence of a large amount of a supporting
electrolyte.

The current formulation of the bulk diffusion model
considers the effect of back diffusion since the bound-
ary condition of the cupric ion is set equal to the bulk
value far upstream away from the entrance of the
electrode. With this type of boundary condition, the
bulk diffusion model is generally valid for all Peclet
numbers in the presence of an excess amount of a
supporting electrolyte. However, when the amount of a
supporting electrolyte is not in excess (r < 0.95), the
more rigorous field model should be used to accurately
predict the current distribution due to the effect of
ionic migration.
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Appendix A: Numerical discretization
of the bulk diffusion model

The following indices were used for the 2D control
volume formulation of the mass-transfer equation: i for
the axial direction and j for the radial direction.

We began by setting up a material balance on the
control volume, shown in Figure 9, for the convective
diffusion equation,

J2nEAL — T 2nEo AL + Jom(EF — &)

— (& - &) =0 (A1)

where J;, Jy, J; and J; are the dimensionless integrated
total fluxes through the top, bottom, right and left face
of control volume, respectively. That is,

Ji = Di(0:j = 0 j11) (A2)
Jp = Dy(0; ;-1 — 0i) (A3)
Jy=F0;j+a:(0;; — 0i11) (A4)
Ji=F0i; + a(0i-1; — 0i)) (AS)

F; and F, were the dimensionless local convective fluxes
acting on the faces of the control volume,

5£b — 5)’(15]) +§y(i7j_ 1) (A7>
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Fig. 9. Control volume formulation for cylindrical geometry.

Ox(i +1,/) + 0:(i, j)

oL, = 5 (A8)
5C1:5x(i,j)+(25x(i—1,j) (A9)
D= éé%ag (A10)
Dy = éé%é ,« (All)
F= ;A (5‘ ; ‘fb> 5, (Al2a)
D, :%e(zjr)mlr(ft er %) 5, (A12b)
A= 251 (5“ ;F 55) 5¢) (Al3a)
p=t b Lt (A13b)

Pe(24,)°004 2

where Dy, Dy, D, and D; were the dimensionless local
diffusive fluxes through the face of the control volume.
ar :DrA(|Pr|)+ ”_Fra()” (A14)

a = DIA(|R[) + ||A, 0] (A15)

P, and P, were defined as the local Peclet number on the
right and left faces of the control volume, respectively.
That is,

AR = [0, (1 =017y (A16)
A(R)) = o. (1 = 0111’ (A17)
where
Pr:5 and PI:ﬂ (A18)
D, Dy

A power law scheme [13] valid at both the low and
high Peclet number range was adopted in the present
work.

In the bulk electrolyte, a material balance on the
representative control volume was set up and shown in
Figure 9, for the Laplace equation. That is,

JRrEN, — Jo2nE AL+ (&R — &)

(&= &) =0 (A19)
g = = A%0)
Jp = % (A21)
Jp = %;7;3*“ (A22)
T (A23)

where J;, Jy, J; and J; referred to the dimensionless
integrated total fluxes through the top, bottom, right
and left control volume faces, respectively.

The numerical solution of these simultaneous differ-
ence equations was obtained by using the subroutine
BANDIJ [9].

Appendix B: Numerical discretization of the field model
Due to the highly nonlinear nature of the partial

differential equations, the dependent variables were
linearized around a guess value.

0:(C, &) = 00(L, &) + AG(L, &) (B1)
B(L,E) = (L&) +AP(L,€)

where 0°(¢, ¢) and $°(¢, &) were the guess values, while
AB;((,¢) and A¢({,¢) were defined as the difference

(B2)



between the actual value and the guess value, and
0:(¢,¢) and ¢(C, &) were the actual values.

A material balance on the representative control
volume for a species is given by

J2nEAL — Jo2mE AL + Jim(EC2

— (& - &) =0

— &%)

(B3)

where J;, Jp, J; and J; referred to the dimensionless
integrated total fluxes through the top, bottom, right
and left control volume faces, respectively. That is,

Jy = Dy(0;; —

09"

zi(Di6&)— - o2 |

Jp = Dp(0; -1
-0

- Zi(Db5§b)a¢
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o5
ot

T
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99’
o |
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Zigg(qgi.jﬂ
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- Qi,j) - Zieg(d_)i,j -
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09"

5| (B4)

d_’i,j—l)Db

-0

¢

9¢

b
(f;i,j)Dr

-0
o¢ (B6)

¢i—17j)Dl

(B7)

1

F; and F were the dimensionless local convective fluxes
through the faces of the control volume.

5¢, = (1J+12)+5v( J)
sty = BN 005 1)
s deli+ 1,2 +0:(i,))

35 = b0+ 8= L)
D= gk 5

Dr—l L1 Gty

Pe (24,00, 2

(B10)

(B11)

(B12)

(B13)

(Bl4a)

(B14b)
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_ Uyl ét+éb ) .
= 2Ar( > )5@ (B15a)

R 2 (B15b)

Dy, Dy, D; and D; were the dimensionless local diffusive
fluxes through the faces of the control volume.
ay :DrA(lprD'i_ ”_Fru()” (B16)

ai = DIA(|R) + ||, 0] (B17)

P, and P were defined as the local Peclet number on the
east and west faces of the control volume, respectively.

(BI8)

0, (1 70.1|Pr|)5H
ar)) = [Jo. (1= 0.m)yY| (B19)

The power law scheme [13] was once again adopted in
the present work.

F, F
P.= D, and A= ) (B20)
0, = 041611 + 00, (B21)
011 +0¢;
0;;06&; + 01108,
0. — 0% JH106; B22
0i41,00;1 + 08¢
Qr _ ,_{ J B23
0lip1 + 0§ (B2
0;,;00; + 0;-1 ;60
o, 000, O B24
! 8+ 00 .
o¢° _?j - _?jfl
997 _ i \ B25
aé b 551} ( )
0 20 _ a0
0| _ bijr1 — 9iy (B26)
¢ |, o0&,
8(/;0 . 7?-&-1,_/' — 721’
2By~ (B27)
0’| bl — ),
9¢°| _ & , B28
o¢ |, e .

The numerical solution of these simultaneous difference
equations was obtained by using the subroutine BANDJ

1.
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Appendix C: Solution procedure
Cl. Bulk-diffusion model

Equations 20-30 subject to appropriate boundary con-

ditions, were solved as follows:

1. Input the reactant bulk concentration, c|., and the
applied potential, Vypp,.

2. Initially, the concentration and the potential every-
where in the domain were set equal to the bulk
concentration and the applied potential, respectively.

3. The concentration was updated by solving the con-
vective diffusion equation from the previously
known values of the concentration and the potential.

4. Using the new concentration, the current distribu-
tion, icp, was calculated.

5. The potential was updated by solving the Laplace
equation from the previous potential and the
updated concentration.

6. Using the new potential, the current distribution, irp,
was calculated

7. If |icp(x) — iLp(x)| was greater than 107°, steps 37
were repeated.

8. If licp(x) — iLp(x)| was less than 107°, the solution
was obtained.

C2. Field model

Equations 4249 with the appropriate boundary condi-
tions were solved as follows:

. Input the charge and the bulk concentrations for

each of the individual species (z1, z2, 23, Z4, Cloos C2005
C3005 6400)‘

. Input the applied potential, Vypp.
. Initially, the concentration and the potential every-

where in the domain were set equal to the bulk
concentration and the applied potential, respectively.

. The concentration and the potential were updated by

solving the four field equations plus the electroneu-
trality condition using the previously known values
of the concentration and the potential.

. Let
’cllv(x, r) —cl(x, r)| = errl
|clzv(x, r) —ch(x, r)| = err2
| (x,7) = & (x,7)| = err3
’civ(x, r) — cf:(x, r)| = errd

|¢)N(x, r) — ¢F(x,r)| = errs

The superscript N referred to the updated values while
the superscript P referred to the values from the
previous iteration. Also,

err = Max|errl, err2, err3, errd, err5|

If err was greater than 107, step 4 was repeated.



